

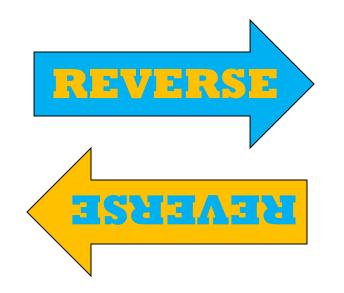
Heat Pumps

Community Workshop - Manchester Library, Manchester

Jake Marin Program Manager – HVAC/R Efficiency Vermont April 14, 2015

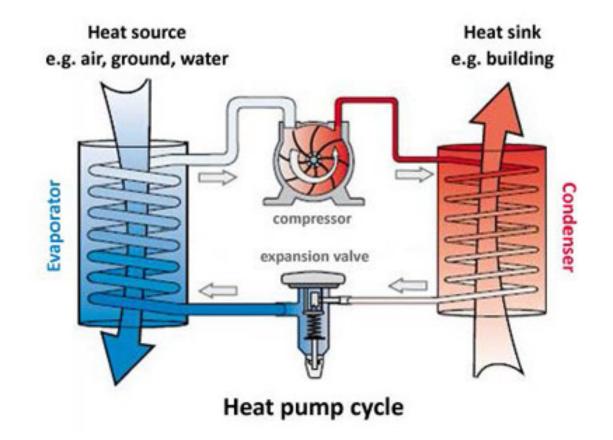
Benefits of Heat Pumps

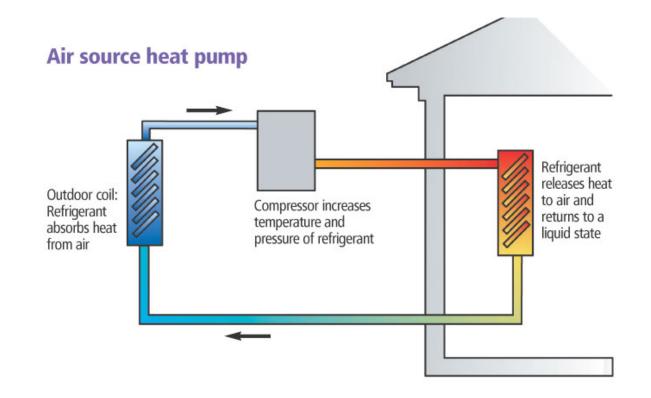
- Heating and cooling from same piece of equipment
- **Cheaper** than most conventional heating systems
- Also efficient cooling
- Ductless heat pumps are a **quick and non-invasive** retrofit installation
- New construction reduced need for heating and cooling infrastructure
- Can be completely **sustainable** if powered by renewables



A Quick Technology Primer

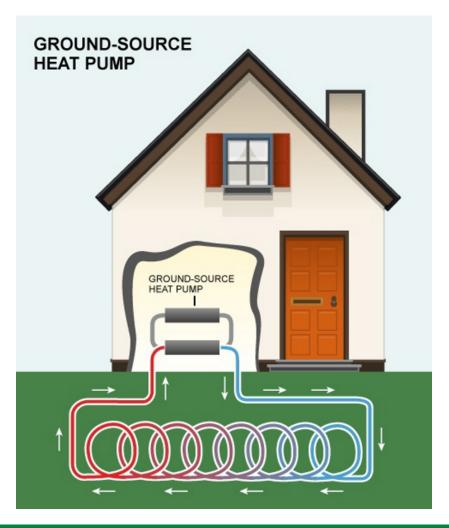
What IS a heat pump, anyway?


An air conditioner in reverse


Heat Source \rightarrow Heat Sink

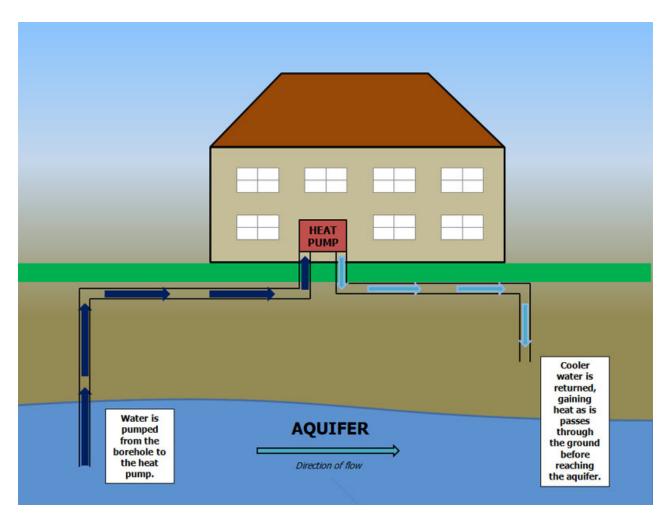
Heat Source

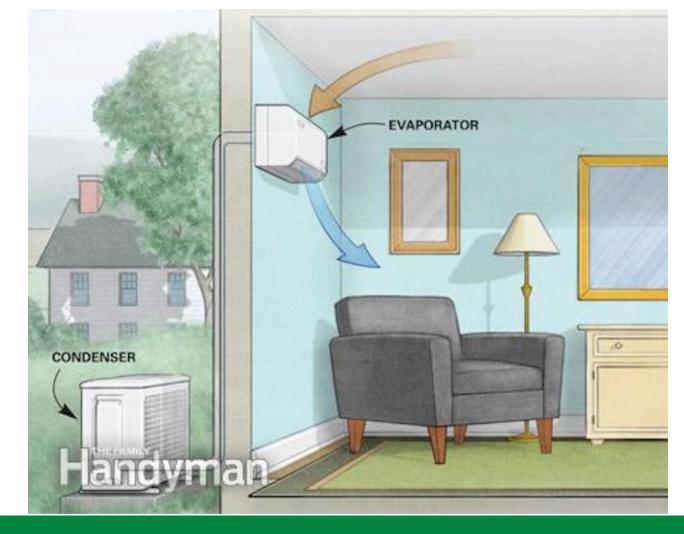
Air (Air Source Heat Pump)



Ground (Ground Source or Geothermal Heat Pump)

➢ Earth





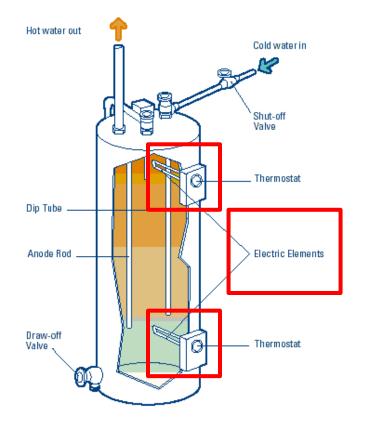
Heat Sink – Space Heat

Air Delivered

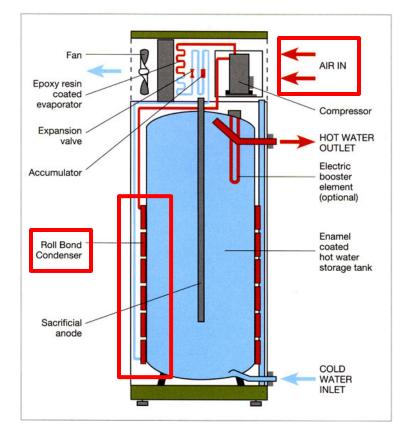
Heat Sink – Space Heat

Water Delivered

Heat Sink – Domestic Hot Water Heat Pump Water Heaters


- Air → Water
- 1/3-1/2 the electricity compared to a standard electric water heater (saves 50-66% in water heating costs)
- \$550 Efficiency Vermont discount on this equipment
- New federal standards in April, 2015 will require electric water heaters >55 gal to be a heat pump water heater

What's the Difference?


Standard Electric Water Heater Creates heat using electricity (with a heating element)

Generally, it's easier to move something, than to make something...

Heat Pump Water Heater

Moves heat (energy) from one place (air) and transfers it to another (water).

Heat Pump Water Heater Considerations

- Units should be installed in a space where the temperature stays above ~50°F
- Better suited to basements than living spaces
- At least 750 cubic feet of air space around the unit
- Requires a condensation drain either pumped outside, or passively drained to a lower receptacle

A Closer Look at Space Heating with Heat Pumps

Some Equipment Terminology

Heat Pump – Overarching technology

- **Ductless Heat Pump** A heat pump which delivers space conditioning without ducts
- Mini-Split A heat pump in which the system is "split" between indoor and outdoor components
- Multi-Split (also, multi-port or multi-zone) As above but with multiple indoor units connected to a single outdoor unit
- Ductless Mini-Split A ductless delivery split system
- Air Source Heat Pump Heat pump equipment with air derived heat energy
- **Geothermal (Ground Source) Heat Pump** Heat pump equipment with ground or water derived heat energy

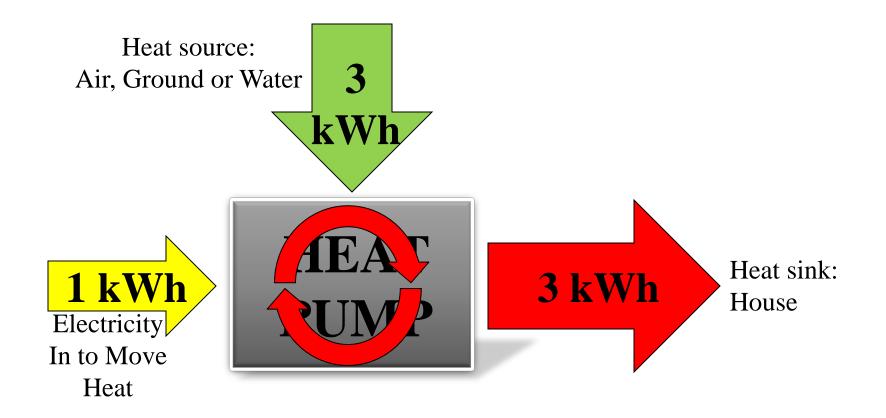
Efficiency Acronyms – Why 3?

(Expressed as btus/watt)

HSPF – Heating Seasonal Performance Factor
> Seasonal heating efficiency of a heat pump
SEER – Seasonal Energy Efficiency Ratio
> Seasonal cooling efficiency of a heat pump
EER – Energy Efficiency Ratio
> Peak cooling efficiency of heat pump running at 95°F

Efficiency Vermont

Are they efficient?


- They Move Heat, rather than Generate Heat
- Leverage heat existing in the environment (stored solar energy) rather than burn fuel to release energy
- High SEER Cooling
- High HSPF Heating
- COPs of 2.0-4.0+
 - What is COP???
 - COP (Coefficient Of Performance) = Energy Out/Energy In

So... A COP of 2-4 is equivalent to 200-400% efficiency!

More Out than In (COP of 3)?

Cold Climate Performance

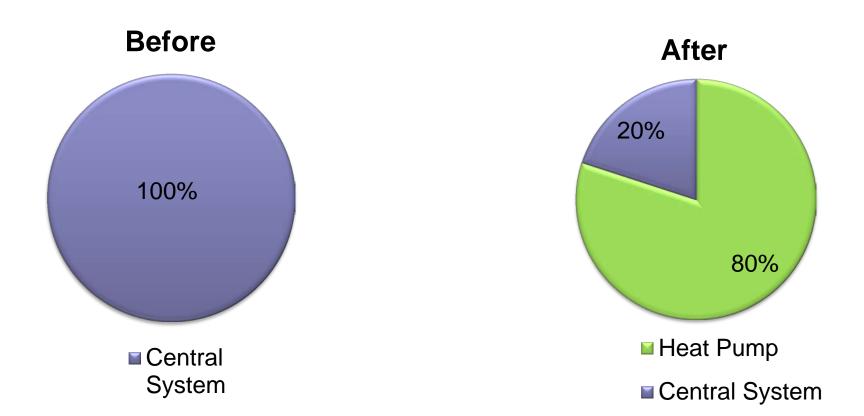
Cold Climate Heat Pump

Maintain capacity at very cold temperatures (below 5°F)
 High efficiency at these low temperatures

How is this achieved?

- ≻New refrigerants
- ➤Ultra high pressure systems
- Variable speed compressors
- Sophisticated controls

Heat Pump Economics


Ductless Mini Splits

The Displacement Model

A Comparison of Heating Fuels

Fuel Type	Unit	Btu/Unit	Efficiency	\$/	Unit	\$/	MMBtu
Natural Gas	Therm	100,000	90%	\$	1.48	\$	16.44
Wood	Cord	22,000,000	60%	\$	227.00	\$	17.20
Pellets	Ton	16,400,000	80%	\$	294.00	\$	22.41
Fuel Oil	Gallon	138,200	85%	\$	3.22	\$	27.41
Kerosene	Gallon	136,600	85%	\$	3.80	\$	32.73
Propane	Gallon	91,600	90%	\$	2.86	\$	34.69
Electricity	kWh	3,412	100%	\$	0.15	\$	43.96
Electricity							
(Heat Pump)	kWh	3,412	250%	\$	0.15	\$	17.58

Typical Residential Heating Fuel Costs (75 MMBtu/Yr)

Fuel	Volume	Unit	\$/Unit	\$/Year	
Natural Gas	833	Therms	\$1.48	\$1,233	
Wood	5.7	Cords	\$227.00	\$1,289	
Pellets	5.7	Tons	\$ 294.00	\$1,680	
Fuel Oil	603	Gallons	\$3.22	\$2,055	
Kerosene	610	Gallons	\$3.80	\$2,454	
Propane	910	Gallons	\$2.86	\$2,601	
Electricity	21,981	kWh	\$0.15	\$3,297	

 Without Natural Gas (or biomass), heating costs run \$2000-\$3000+ per year

Heating Fuel Cost Savings with an ASHP (COP 2.5)

Fuel	75 MMBtu/Yr			
Natural Gas	-\$68.43			
Wood	-\$23.28			
Pellets	\$289.41			
Fuel Oil	\$589.58			
Kerosene	\$908.56			
Propane	\$1,026.41			
Electricity	\$1,582.65			

- Savings ~\$600-\$1600/yr
- Assuming 80% heating fuel offset and no cooling effects

Play with Numbers

(80% Displacement, 75 mmbtu/yr home, 85% efficient oil system)

House before:

- ➢ 640 gallons fuel oil (\$3.22/gal)
- \$2060/yr for heat (88 MMBtu)

House after:

- > 128 gallons oil + 7050 kWh electricity (\$0.15/kWh)
- \$410 (oil) + \$1060 (electric) = \$1470/yr for heat (42 MMBtu)
- Net Savings \$590/yr (46 MMBtu 52% Reduction)
- ➢ 3600 lbs CO₂/yr NET reduction

Cost of Heat Pumps

- Single Zone Ductless \$4,000
- Multi Zone Ductless \$6,000 \$20,000
- Ground Source \$20,000+

Successful Applications

Air-source heat pumps

Good Building Characteristics for Heat Pumps

- Well air sealed and insulated
- Open floor plan/Open doors
- Multi-story homes
- Existing multi-zonal heat
- Functional backup system
- Expensive heating fuel
- Site based electrical generation

A Good Installation

- Install at least 18-24" off the ground
- Do not install under eave without a cover
- Indoor unit placed with best access to volume of space
- Refrigerant line penetration air sealed
- Line-set is insulated and protected
- Properly wired and evacuated
- Integration with existing heating system considerations

Additional Considerations

- They make noise
 - Indoor vs. outdoor noise
 - Wall brackets vs. ground stands
- They are not invisible
- Decreased output as it gets colder
- Decreased efficiency as it gets colder
- Electrical infrastructure (double 15/20 breaker required)
- Low end temperature setting

Heat Pump Myths – Busted!

- Myth Heat Pumps don't work when it gets really cold
- Truth Cold Climate Heat Pumps operate effectively below -5F
- Myth Heat Pumps are a great replacement when your current heating system dies
- Truth Air source heat pumps provide heating displacement, but not full replacement. You'll need a backup
- Myth The fuel for heat pumps is coolant
- Truth Heat pumps run on electricity. The coolant (refrigerant) is contained inside a closed loop and is not "used up"
- Myth Heat pumps will lower all my bills
- Truth For most people, they lower fuel bills, but raise electric bills

Efficiency Vermont Program

Cold Climate Heat Pumps

How does it work?

- 1. Installation contractor (or homeowner) purchases eligible equipment from a participating wholesaler
- 2. Provide some basic information about installation
- 3. \$300 Discount applied to purchase
- 4. No forms or waiting for a check

Eligible Equipment

- HSPF ≥ 10.3, EER ≥ 12.0, SEER ≥ 20.0
- COP $@5^{\circ}F \ge 1.75$ (at maximum capacity operation)
- Operation at -5°F or below

For a list of eligible models, visit:

https://www.efficiencyvermont.com/docs/for_partners/contractors/evt-cchp-qpl-bymanufacturer.pdf?v=7

Participating Distributors

For a full list of Participating Distributors and branch locations, visit:

https://www.efficiencyvermont.com/docs/for_partners/contractors/evt-cchp-distributors.pdf?v=3

Pay for it with a low or no interest loan

- Energy efficiency loans pay for improvements such as
 - Cold climate heat pumps
 - Upgrading heating systems (including pellet boilers and furnaces)
 - Air sealing or insulating leaky attics
 - New efficient windows and doors... and more!
- Financing often results in <u>saving more</u> money on monthly utility bills <u>than you are paying</u> in loan payments

Next step -Do something

What are the financing options available?

Improvement loans exist from select financial institutions, but they may not be geared toward energy efficiency upgrades... here are a few that are:

• For Homeowners

- Heat Saver Loan Program
- PACE (Property Assessed Clean Energy)

For Businesses

- Business Energy Loan Program
- Energy Loan Guarantee Program

• For Farms

• Efficiency Vermont Ag Loan Program

How to save, with Efficiency Vermont

• Look for SMART CHOICE electronics & appliances at local

retailers

We've researched the products that are proven to save you money and energy, and marked them with a SMART CHOICE label. Plus! Most have **cash back rebates** available. Efficiency Vermont

- Discounted LEDs starting at **\$4.99** & CFLs starting at **99**¢
- Home weatherization offers like a **\$100** discount on an energy audit and up to **\$2,000** off eligible improvements
- Efficiency assistance from our customer service and technical support teams

We can help you determine the best options for your home... Call us!

Thank You!

